Exercice 1

Calculer les intégrales suivantes :

a)
$$\int_0^1 (t^3 + 4t) dt$$

c)
$$\int_{2}^{0} \frac{1}{3+2x} \, \mathrm{d}x$$

e)
$$\int_{-1}^{0} 5u e^{u^2+2} du$$

b)
$$\int_{-3}^{4} e^{5u} du$$

d)
$$\int_0^2 \frac{e^{3t}}{6 + e^{3t}}$$

f)
$$\int_{-2}^{3} \cos(\pi x) \, \mathrm{d}x$$

Exercice 2

Calculer les intégrales suivantes :

a)
$$\int_{-2}^{2} |x| \times (x^2 + 1) dx$$

c)
$$\int_0^2 \frac{1}{(u+1)^3} \, \mathrm{d}u$$

e)
$$\int_{-\pi}^{\pi} 2\cos t (\sin t)^4 dt$$

b)
$$\int_{1}^{2} \frac{8x+4}{(x^2+x)^2} dx$$

d)
$$\int_0^{\ln(3)} \frac{3e^{2x}}{\sqrt{1+e^{2x}}} dx$$

f)
$$\int_0^1 (6x^2 - 4x - 3) e^{-x^2} dx$$

Pour la dernière intégrale, on pourra chercher une primitive de la fonction à intégrer sous la forme $F(x) = (ax + b) e^{-x^2}$.

Exercice 3

On considère les intégrales $I = \int_0^1 \frac{e^x + 1}{e^x + 2} dx$ et $J = \int_0^1 \frac{1}{e^x + 2} dx$.

- 1) Calculer I + J et I J
- 2) En déduire les valeurs de I et J

Exercice 4

On considère la fonction $f: x \longmapsto \frac{e^{2x}}{e^x + 2}$.

- 1) Déterminer a et b tels que $f(x) = a e^x + \frac{b e^x}{e^x + 2}$ pour tout réel x.
- 2) En déduire $\int_{-1}^{0} f(x) dx$

Exercice 5

On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \int_0^n e^{-x^2} dx$. On ne cherchera pas à calculer u_n .

- 1) Montrer que (u_n) est croissante
- 2) Démontrer que pour tout réel $x \ge 0$, on a : $-x^2 \le -2x+1$, puis $\mathrm{e}^{-x^2} \le \mathrm{e}^{-2x+1}$
- 3) En déduire que pour tout entier naturel n on a $u_n \leq \frac{e}{2}$
- 4) Démontrer que la suite u_n est convergente. On ne cherchera pas à calculer sa limite.

— Exercice 6 -

Soit I_n définie pour tout $n \in \mathbb{N}$ par $I_n = \int_0^1 \frac{x^n}{1+x} dx$.

- 1) Sans chercher à calculer I_n , montrer que $\lim_{n\to +\infty} I_n = 0$
- 2) Calculer $I_n + I_{n+1}$
- 3) Déterminer $\lim_{n\to+\infty} \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}$.

Exercice 7

Soient f la fonction définie et dérivable sur l'intervalle $[0; +\infty[$ par $f(x) = \frac{x}{e^x - x}$, et la suite (I_n) définie pour tout entier naturel n par $I_n = \int_0^n f(x) dx$. On ne cherchera pas à calculer la valeur exacte de I_n en fonction de n.

- 1) Étudier la fonction $x \mapsto \frac{x}{e^x x}$ sur $[0; +\infty[$ et en déduire son signe.
- 2) Montrer que la suite (I_n) est croissante
- 3) On admet que pour tout réel x de l'intervalle $[0; +\infty[$, $e^x x \ge \frac{e^x}{2}]$.
 - a) Montrer que, pour tout entier naturel n, $I_n \leq \int_0^n 2x e^{-x} dx$.
 - b) Soit H la fonction définie et dérivable sur $[0; +\infty[$ telle que $H(x) = (-x-1)e^{-x}$. Déterminer la fonction dérivée H' de la fonction H
 - c) En déduire que pour tout entier naturel $n, I_n \leq 2$
- 4) Montrer que la suite (I_n) est convergente. On ne demande pas la valeur de sa limite.

Soient f et g deux fonctions continues sur un intervalle [a; b]. Montrer que

$$\left(\int_{a}^{b} f(x)g(x) dx\right)^{2} \leq \left(\int_{a}^{b} (f(x))^{2} dx\right) \left(\int_{a}^{b} (g(x))^{2} dx\right)$$

Indication : considérer le signe de $\int_a^b (\lambda f(x) + g(x))^2 dx$ en fonction de λ .

* * Exercice 9 -

Calculer la dérivée de $f: x \longmapsto \int_{x^2}^{x^4} e^{-\sqrt{t}} dt$.

Indication : on pourra considérer une primitive F de $x \mapsto e^{-\sqrt{x}}$ sans chercher de formule explicite pour cette fonction.

(Inégalité de Young) Soit $f: \mathbb{R}^+ \longrightarrow \mathbb{R}$ une fonction dérivable et strictement croissante telle que f(0) = 0.

- 1) Pour tout x>0, montrer que $\int_0^x f(t) dt + \int_0^{f(x)} f^{-1}(t) dt = xf(x)$
- 2) En déduire que $\forall a, b > 0$, $\int_0^a f(t) dt + \int_0^b f^{-1}(t) dt \ge ab$.

 $\star \star \star$ Exercice 11

(**D'après Oraux ENS 2019**) Pour tout $x \in [0,1]$, on définit la suite $(f_n(x))_{n \in \mathbb{N}}$ de la manière suivante. On définit la fonction $f_0 : x \in [0,1] \mapsto 1$ et pour tout $n \in \mathbb{N}$, $x \in [0,1]$,

$$f_{n+1}(x) = 1 + \int_0^x f_n(t - t^2) dt$$

- 1) Déterminer les fonctions f_1 et f_2
- 2) Soit $x \in [0,1]$ fixé. Étudier le sens de variation de $(f_n(x))_{n \in \mathbb{N}}$.
- 3) Montrer que, pour tout $n \in \mathbb{N}^*$, pour tout $x \in [0,1]$, $1 + x \le f_n(x) \le e^x$.
- 4) Montrer que, pour tout $x \in [0,1]$, la suite $(f_n(x))_{n \in \mathbb{N}}$ converge vers une limite que l'on notera f(x).
- 5) Montrer que $\forall (x,y) \in [0,1]^2$, $|f(x) f(y)| \le e|x y|$
- 6) En déduire que la fonction $x \mapsto f(x)$ est continue sur [0,1].

Intégration par partie

*
Exercice 12

Calculer les intégrales suivantes à l'aide d'une intégration par partie :

a)
$$\int_0^1 (x+1) e^x dx$$

c)
$$\int_{1}^{e} x^3 \ln x \, dx$$

e)
$$\int_{1}^{e^{2}} \frac{\ln(t)}{t} dt$$

b)
$$\int_0^{\pi} x \sin x$$

d)
$$\int_0^{\ln 2} (x^2 + 3x) e^x$$

f)
$$\int_0^{\frac{\pi}{2}} e^{\theta} \sin \theta d\theta$$

Exercice 13

Calculer les intégrales suivantes à l'aide d'une intégration par partie :

a)
$$\int_{1}^{e} \ln x \, dx$$

b)
$$\int_{1}^{e} (\ln x)^2$$

c)
$$\int_0^1 \arctan(u) du$$

Exercice 14

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^1 . On pose $I_n = \int_a^b f(t) \sin(nt) dt$.

- 1) À l'aide d'une intégration par partie, montrer que $I_n = u_n + \frac{1}{n}J_n$ où u_n est une suite qui tend vers 0 et $J_n = \int_a^b f'(t)\cos(nt)\,\mathrm{d}t$
- 2) Montrer que la suite (J_n) est bornée.
- 3) En déduire $\lim_{n\to+\infty} I_n$.

Exercice 15

On pose pour tout $n \in \mathbb{N}^*$, $I_n = \int_0^1 u^n e^u du$.

- 1) Montrer que $\lim_{n \to +\infty} I_n = 0$
- 2) Pour tout $n \in \mathbb{N}^*$, déterminer une relation de récurrence entre I_n et I_{n+1} .
- 3) Trouver un équivalent simple de I_n lorsque l'entier n tend vers l'infini.

Exercice 16 -

Soit $f:[a,b] \longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^1 telle que f(a)=f(b)=0. Soit $M=\sup_{t\in[a,b]}|f'(t)|$, c'est à dire un réel tel que $\forall t\in[a,b], |f'(t)|\leq M$.

- 1) Montrer que $\left| \int_a^b f(t) \, \mathrm{d}t \right| \le \frac{(b-a)^2}{4} M$
- 2) Déterminer dans quel(s) cas l'égalité précédente est une égalité.

Changement de variables

noio

Exercice 17

Calculer les intégrales suivantes à l'aide du changement de variable indiqué :

1)
$$\int_0^1 \frac{2t \ln(t^2 + 1)}{t^2 + 1} dt$$
, $u = t^2 + 1$

3)
$$\int_{1/8}^{1/3} \frac{\mathrm{d}t}{t\sqrt{t^2+t}}, \quad u = \frac{1}{t}$$

2)
$$\int_{1}^{8} \frac{\mathrm{d}t}{\sqrt[3]{t+t}}$$
, $u = \sqrt[3]{t} = t^{1/3}$

4)
$$\int_0^1 \frac{dt}{e^t + e^{-t}}, \quad u = e^t$$

Soit T>0 un réel et soit f une fonction périodique de période T sur \mathbb{R} . Montrer que pour tout $(a,b)\in\mathbb{R}^2$,

$$\int_a^{a+T} f(x) \, \mathrm{d}x = \int_b^{b+T} f(x) \, \mathrm{d}x$$

Exercice 19 -

1) À l'aide du changement de variable $u=\frac{\pi}{2}-t,$ démontrer que

$$\int_0^{\frac{\pi}{2}} \frac{\cos(t)}{\sin(t) + \cos(t)} dt = \int_0^{\frac{\pi}{2}} \frac{\sin(t)}{\sin(t) + \cos(t)}$$

2) En déduire que $\int_0^{\frac{\pi}{2}} \frac{\sin(t)}{\sin(t) + \cos(t)} = \frac{\pi}{4}$, puis en déduire la valeur de $\int_0^1 \frac{\mathrm{d}x}{\sqrt{1 - x^2} + x}$ Indication : on pourra utiliser le changement de variable $x = \sin(t)$

Pour tout $n \in \mathbb{N}$, on pose $W_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$, appelée intégrale de Wallis.

Le but de cet exercice est d'étudier la suite $(W_n)_{n\in\mathbb{N}}$ où

- 1) Calculer W_0 et W_1 .
- 2) Montrer que (W_n) converge.
- 3) En posant $t = \frac{\pi}{2} x$, montrer que pour tout $n \in \mathbb{N}$, $W_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$
- 4) En déduire W_2 .
- 5) À l'aide d'une intégration par partie, montrer que pour tout $n \in \mathbb{N}$, $W_{n+2} = \frac{n+1}{n+2}W_n$.
- 6) En déduire que pour tout $n \in \mathbb{N}$, $(n+1)W_nW_{n+1} = \frac{\pi}{2}$.
- 7) Montrer que $\lim_{n \to +\infty} W_n = 0$, $\lim_{n \to +\infty} \frac{W_n}{W_{n+1}} = 1$, et $\lim_{n \to +\infty} \sqrt{n} W_n = \sqrt{\frac{\pi}{2}}$.
- 8) Montrer que pour tout $n \in \mathbb{N}$, $W_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$

Sommes de Riemann

* - Exercice 21

- 1) À l'aide du changement de variable $\sin(t) = x$, montrer que $\int_0^1 \sqrt{1-x^2} \, \mathrm{d}x = \int_0^{\frac{\pi}{2}} \frac{1+\cos(2t)}{2} \, \mathrm{d}t$
- 2) En déduire la valeur de $\lim_{n \to +\infty} \sum_{k=1}^n \frac{\sqrt{n^2 k^2}}{n^2}$

Exercice 22

- 1) Calculer $\int_0^1 \ln(1+x) dx$
- 2) En déduire, à l'aide d'une somme de Riemann, la limite de (u_n) définie pour tout entier $n \ge 1$ par $u_n = \left(\frac{(2n)!}{n^n n!}\right)^{\frac{1}{n}}$